
*Corresponding author. Tel.: #43-1-31336-4619; fax:#43-1-31336-717.
E-mail addresses: thomas.reutterer@wu-wien.ac.at (T. Reutterer), martin.natter@wu-wien.ac.at (M. Natter)

Computers & Operations Research 27 (2000) 1227}1247

Segmentation-based competitive analysis with MULTICLUS
and topology representing networks

Thomas Reutterer!,*, Martin Natter"

!Department of Retailing and Marketing, Vienna University of Economics and Business Administration, Augasse 2-6,
A-1090 Vienna, Austria

"Department of Production Management, Vienna University of Economics and Business Administration, Augasse 2-6,
A-1090 Vienna, Austria

Abstract

Two neural network approaches, Kohonen's self-organizing (feature) map (SOM) and the topology
representing network (TRN) of Martinetz and Schulten are employed in the context of competitive market
structuring and segmentation analysis. In an empirical study using brands preferences derived from
household panel data, we compare the SOM and TRN approach to MULTICLUS, a parametric latent
vector multi-dimensional scaling (MDS) model approach which also simultaneously solves the market
structuring and segmentation problem. Our empirical analysis shows several bene"ts and shortcomings of
the three methodologies under investigation. As compared to MULTICLUS, we "nd that the non-
parametric neural network approaches show a higher robustness against any kind of data preprocessing and
a higher stability of partitioning results. As compared to SOM, we "nd advantages of TRN which uses
a more #exible concept of adjacency structure. In TRN, no rigid grid of units must be prespeci"ed. A further
advantage of TRN lies in the possibility to exploit the information of the neighborhood graph for adjacent
prototypes which supports ex-post decisions about the segment con"guration at both the micro and the
macro level. However, SOM and TRN also have some drawbacks as compared to MULTICLUS. The
network approaches are, for instance, not directly accessible to inferential statistics. Our empirical study
indicates that especially TRN may represent a useful expansion of the marketing analyst's tool box.

Scope and purpose

Determination of competitive market structure among rival brands and market segmentation represent
well-known concepts in strategic marketing planning. During the last decade, approaches that combine the
two interrelated tasks into one single model have been introduced into marketing literature. Most of them
respect consumer heterogeneity by including &"xed' parameters (e.g., demographic or past purchase behavior
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variables) for each individual or by assuming consumer parameters to be distributed according to a (mixture
of) probability distribution(s). However, the key to the success of these statistical modeling approaches seems
to lie in the proper choice of parametric model assumptions and/or heterogeneity distributions. Due to its
non-parametric nature, the neuro-computing methodology presented in this article imposes less rigorous
assumptions on data properties and derives segment-speci"c patterns of competitive relationships between
brands in a purely data-driven way. ( 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Competitive market structure (CMS) analysis refers to the task of deriving a con"guration of
brands in a product class on the basis of their competitive relationships. It is widely accepted by
marketing scientists to operationalize the degree of inter-brand competition as a measure of
substitution as perceived by consumers [1,2]. However, once the data analyst wishes to introduce
heterogeneity across consumers (e.g., in terms of preference and/or consideration set) into the
model, CMS turns out to be a segment-specixc concept, which imposes the issue of deciding about
the appropriate level of data aggregation and making CMS and market segmentation analysis to
be dependent on each other.

The paper proceeds as follows: First, a brief outline of contemporary approaches to simulta-
neous CMS/segmentation analysis is provided. Following, the adaptive self-organizing (feature)
map (SOM) methodology according to Kohonen [3] and the more recently introduced topology
representing network (TRN) model by Martinetz and Schulten [4] are adopted to this task and
applied in an empirical study using household-level panel data. Finally, validity issues are
discussed and both SOM and TRN results are opposed to those emerging from an unfolding
mixture approach.

2. Combined CMS and segmentation analysis

It is quite well understood in marketing literature that utilization of brand choice probabilities as
segmentation basis turns CMS and market segmentation out to be `reverse sides of the same
analysisa [5]. In fact, the basic di!erence of these two sides refers to the kind of how an observed
data matrix is processed. According to data theoretical terminology, the shape of a data matrix is
determined by the number of ways (dimensions) and the number of modes (sets of di!erent entities
that represent the ways of the matrix, e.g., consumers, brands or brand attributes). From this point
of view, the two concepts may be considered as formally identical data reduction problems. As
illustrated in Table 1, the only di!erence concerns the focused mode for data reduction:

Conventional approaches to CMS analysis reduce the brands mode only. They typically result in
either a `non-spatiala arrangement of ultra-metric trees, overlapping or fuzzy cluster structures (for
a review cf. [1]) or a `spatiala representation of brands con"gurations in a geometric space. Spatial
models can be further subdivided into `compositionala methods involving reduction of high-
dimensional attribute spaces via principal components, discriminant or correspondence analysis
and `decompositionala approaches [2]. The latter are usually based on multi-dimensional scaling
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Table 1
Synopsis of models for CMS/segmentation analysis

Mode of Representation type
data reduction

Discrete (`non-spatiala) Geometric (`spatiala)

Brands Hierarchical (tree models)/non-hierarchical
classi"cation

Compositional/decompositional
positioning analysis

&Combined' approaches
(e.g.,S¹;NMIX)

Subjects (consumers) A posteriori market
segmentation

Preference scaling models

(MDS) of respondents' proximity or dominance statements about rival brands. Furthermore,
certain unfolding techniques of preference data embed the consumers mode as ideal vectors or
points in a `joint spacea of consumers and brands con"gurations.

A posteriori market segmentation, on the other hand, refers to a compression of the consumers
mode, which is usually achieved via clustering or latent class techniques [6].

In contrast, approaches for combined CMS/segmentation analysis reduce the consumers and
brands mode simultaneously in one single model. Proposals towards this direction are pre-
sented, e.g., by Hruschka [7] using fuzzy clustering methods, Grover and Srinivasan [5] or
Kamakura and Russell [8] in a latent-class framework or Wedel and Steenkamp [9] using
a cluster-wise regression procedure. Another promising stream of modeling e!orts equipped with
the option of introducing the consumer mode into CMS analysis is represented by models for
multimode factor analysis. Cooper et al. [10] illustrated in a study that constrained versions of
three-way factor analysis are also able to uncover asymmetric competitive relationship patterns
between rival brands.

2.1. Multiclus

A particularly interesting class of models for simultaneous CMS/segmentation analysis employ
`latent class multidimensional scalinga (LCMDS) techniques [11,12]. For illustration of current
LCMDS methodology, consider the MULTICLUS model of DeSarbo et al. [13]:

MULTICLUS is designed to process pro"le or dominance data and simultaneously performs
MDS and cluster analysis in such a way that a D-dimensional joint space of brand coordinates and
cluster vectors is estimated for predetermined numbers of C clusters and D dimensions. In the
MULTICLUS model, the observed pro"le/dominance values M*

km
N of consumers k"1,2, K for

brands m"1,2, M are interpreted as realizations of an 1]M random vector D
k
"(*

k1
,2,*

kM
),

which probability density function is modeled as a "nite mixture of conditional distributions:

g(D
k
; j,A,B,R)"

C
+
c/1

j
c
f
kc

(D
k
Da

c
, B, R

c
) (1)

T. Reutterer, M. Natter / Computers & Operations Research 27 (2000) 1227}1247 1229



with j"(j
1
, j

2
,2, j

C~1
) independent mixing proportions (such that 0)j

c
)1 and

j
c
"1!+C

c/1
j
c
). The matrices A"Ma

cd
N and B"Mb

md
N resemble the 1]D row vectors of cluster

and product coordinates, respectively, where a
c

contains the vector terminus coordinates for
cluster c. Finally, R is an C]M]M array that stacks together the cluster-speci"c variance-
covariance matrices R

c
.

In their article, DeSarbo et al. [13] specify the distribution of each f
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as conditional multivariate
normal. For a given sample of consumers' brand evaluations, dimensionality D, and number of
clusters C, the estimation of model parameters j, R, A, and B is achieved by maximizing the log
likelihood function:
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For this purpose, an EM algorithm is used (cf. Dempster et al. [14]). The MULTICLUS model
structure respects consumer heterogeneity with regard to attribute perceptions or brand prefer-
ences via maximum likelihood estimates for segment-level ideal vectors in a joint space of brand
coordinates.

More recently, Wedel and DeSarbo [15] presented a generalization of this and parallel
developed approaches of stochastic MDS unfolding mixture models (STUNMIX). This generalized
STUNMIX methodology is formulated in the framework of the exponential family of distributions,
encompassing the normal, binomial, Poisson, gamma, inverse Gaussian, and other distributions
within the class of the exponential family. Thus, a wide range of data, such as ratings, choices,
frequencies duration times are allowed to be (simultaneously) analyzed by the same methodologi-
cal approach. Furthermore, various combinations of di!erent types of preference models,
re-parameterization options and simultaneous segment description are available. The authors
demonstrate their generalized STUNMIX approach using synthetic data generated from distribu-
tions of the exponential family and real-world data.

However, even if current state-of-the-art STUNMIX methodology is #exible enough for
detecting a wide range of (hypothesized) underlying mixture distributions and seems to be
relatively robust to moderate misspeci"cations (see the experimental "ndings reported by
Wedel and DeSarbo [15]) the suitable representation of consumer segments and brand
positions "nally turns out to be dependent on the proper choice of some functional and dis-
tributional form of the parameters to be estimated. More #exibility is conceded by an
approach recently introduced by Allenby, Arora and Ginter [16]. In this model, hetero-
geneity is interpreted as a continuous concept and &segments' are modeled at the individual
level using the Gibbs sampling technique in the framework of a model of normal mixture
components.

In the following section, we introduce a non-parametric alternative to the STUNMIX model
family. The proposed methodology inspired by neuro-computing technology imposes no speci"c
assumptions on input data requirements (such as data type or underlying distributions). Thus, it
may serve as a promising and #exible tool for multimode data compression especially for cases
where the hypothesized distributional assumptions are seriously violated and/or the analyst is not
able (e.g., due to a lack of any well-grounded theory) or willing to impose any reasonable
pre-speci"cation of the distribution type. In the following, we present the SOM model and the more
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recently introduced TRN methodology, which may be viewed as a more #exible extension of the
standard SOM procedure.

2.2. SOM

Like other partitioning techniques, the SOM methodology is based on an unsupervised learning
scheme. Similar to principal components analysis or MDS, an SOM network constructs a low-
dimensional mapping in order to detect the inherent structure of high-dimensional input data in
a visually easily inspectable manner. However, SOMs do not produce geometric con"gurations of
brand positions like those estimated by (LC)MDS (STUNMIX) models. SOMs, in contrast, are
facing the dual problem of constructing a classi"cation of input data space and (as an additional
feature making SOMs di!erent from more conventional clustering methods) simultaneously to this
class centers or prototypes are mapped onto a pre-speci"ed grid of units so that the topological
structure of the input data is represented as accurately as possible. As a result they arrive at
a non-linear projection of the original input data space onto a discrete map of topologically
ordered units. The projection is usually done adaptively, i.e., disaggregated input vectors* each of
them re#ecting, e.g., the observed pattern of purchase behavior of one individual respondent* are
presented in a sequential order, which in the neural network literature is frequently referred to as
`network traininga [3].

The SOM network architecture "rst introduced by Kohonen [3,17] consists of the following
components: An m-dimensional input layer representing features (in our empirical study:
brand preference values) of input vectors x

k
"[x

k1
, x

k2
,2,x

km
]T out of a set of k"(1,2, K)

training vectors (e.g., a sample of consumers or households), a two-dimensional competitive
layer organized as a grid of units u

ij
, where i represents the row index and j the column

index of a unit position in the layer, and an m-dimensional weights vector for each SOM unit
u
ij

: w
ij
"[k

ij1
, k

ij2
,2,k

ijm
]T.

The standard SOM algorithm and its variations are well documented in the relevant
literature (cf. Kohonen [3,17] or Nour and Madey [18] for a review). The implementation
used in our study can be brie#y described by the following iterative procedure (for further details
see [19]):

1. Set counter t :"0 and initialize weight vectors w
ij
(t) to random values within [!0.1;#0.1].

2. Randomly choose an input vector x
k
(t) (here: brand choice probabilities of household k)

and determine the `winninga or `best matchinga unit u
cij

(t) with associated activity w
cij

(t)
according to:

DDx
k
(t)!w

cij
(t)DD"min

ij

MDDx
k
(t)!w

ij
(t)DDN, (3)

where the index c
ij

denotes the location of the winner's position in the two-dimensional layer.
3. Update the weights vectors as follows:

w
ij
(t#1)"w

ij
(t)#a(t)h

cij
(t)[x

k
(t)!w

ij
(t)]. (4)

4. If t*¹ stop, else increment t and go to step 2.
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Fig. 1. Neighborhood adjustment for three di!erent kernel radii.

Here t is the discrete time step and ¹ the prede"ned maximum number of iterations. Both the
learning rate 0)a(t))1 and the neighborhood parameter h

cij
(t) are monotonically decreasing

functions with time. In the SOM algorithm available from the "rst author under MATLAB the
functional form a(t)"a(0)(c/(t#c)) with constant c"¹/100 and a(0)"0.1 is used; ¹ is set to 20
epochs (i.e., runs through the input data set). Unlike the discrete-valued neighborhood chosen by
Mazanec [20] in a previous work, here a smoother kernel-based neighborhood update process is
controlled by the Gaussian function

h
cij

(t)"expA!
[(i!c

i
)2#( j!c

j
)2]

2p(t)2 B, (5)

where i ( j) is the row (column) index of an SOM unit u
ij

and (c
i
, c

j
) the corresponding indices of unit

u
cij

(the winner in step 2 of the above algorithm). Hence, the numerator in Gaussian (5) measures
the topological distance between any SOM unit u

ij
and the winner u

cij
. The kernel width parameter

p(t), which is responsible for the degree of neighborhood adjustment (see Fig. 1) also follows
a shrinking function of time.

The adoptions imposed to the weight vectors by the combination of steps 2 and 3 are vital for the
ultimate objective of the SOM learning procedure: In step 3, the input vector x

k
presented to the

SOM layer at iteration t is mapped onto unit u
cij

, i.e., the `winninga unit determined in step 2. This
is achieved by allowing a `maximuma adjustment of the corresponding weights vector for the
amount of *w

cij
(t#1, t)"a(t)[x

k
!w

cij
(t)]. Since the learning rate a(t) is forced to decrease with

time, a classi"cation of the input data space would be achieved via stochastic approximation of the
minimum (inner group) variance partition (cf. Bock [21]).

However, as the formulation of the updating rule in step 3 suggests, there is another feature of
SOM learning, which is responsible for the topological ordering of cluster prototypes onto the
discrete map of units: Not only the `winninga or minimum distance unit u

cij
to the vector

x
k

presented at iteration t but also those units adjacent to the `winnera according to the present
width of the neighborhood kernel h

cij
(t) around the `winnera are activated to gradually learn from
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the same input vector. Fig. 1 illustrates this neighborhood adjustment e!ect for three di!erent
kernel radii.

While the (black-colored) `winninga unit u
cij

for training vector x
k

receives a maximum update
by the respective learning rate a(t) weighted di!erence x

k
!w

cij
(t), the adjacent units (gray-shaded)

only bene"t from the adjustment to a much smaller degree as allowed by the h
cij

(t) values for
neighbors of "rst, second, third, etc., order. As the kernel width monotonically shrinks during
training via decreasing p(t), topological ordering of the prototypes takes place during the initial
training cycles and convergence towards centroids will be accomplished when the neighborhood
kernel is su$ciently reduced.

Since we will use SOM formats of very small size (comparable to the applications reported, e.g.,
in [17]), p(0) is initially set to the diameter of the map and the decreasing functional form is chosen
identical with those for the learning rate but a smoother decay rate of c"¹/10.

Note, that in the case of keeping p"0 throughout the training (i.e., zero-neighborhood) the
process is strictly equivalent to classical vector quantization techniques such as an on-line version
of the K-means algorithm [22]. Furthermore, there also exists a link to supervised neural network
models. As Mulier and Cherkassky [23] show for the batch version of the model (where the whole
training sample is utilized in each iteration), SOMs can also be interpreted as an iterative kernel
smoothing process to the class centroids and therefore may be used as an approximation device. In
fact, the SOM model performs non-parametric regression of the u

ij
coordinates on the input data

space.
However, the predetermined &grid' of SOM units imposes a rather rigid adjacency structure on

the neighborhood update process during training which may not match with the topological
structure of the input data space [4].

2.3. TRN

Martinetz and Schulten [4] adequately address this problem within the framework of their
topology representing network (TRN) approach. Building up on a previous version of topology-
sensitive vector quantization by Martinetz et al. [24] they start with a set of unordered units u

i
,

i"(1,2, N), and associated weights w
i
. In contrast to the SOM model, adjacency of units is

a dichotomous and dynamic concept in TRN analysis. The connectivity structure between units is
stored in an N]N connection strength matrix C, with elements C

ij
'0 denoting that unit u

i
and

unit u
j

are connected and C
ij
"0 that there is no connection between them. In addition, each

connection is evaluated by its age t
ij

that indicates the number of iterations t the connections
already exists without being con"rmed. If the age of a connection exceeds a certain maximum
lifetime ¹, the connection gets removed. This means that connections established in an early stage
will be unlearned, if they are not regularly enough refreshed during the TRN training cycles.
However, once removed the respective connection can again be re-established at a later stage of the
adaptation procedure.

The TRN algorithm as applied in our study follows a similar iterative procedure than
the above SOM algorithm and can be brie#y described as follows (cf. [4,24]): First, the
weights w

i
are initialized with small random values and all connections C

ij
are set to zero

(i.e., no connections are active). At each iteration step of the adaptation process an input vector
x
k

is randomly chosen from the sample space and the `winninga unit u
i0

is determined equivalent
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to the minimum distance rule applied in step 2 of the SOM procedure. However, according to the
`neural gasa algorithm [24] employed in TRN analysis, for each prototype w

i
the number r

i
of

units j with

DDx
k
!w

j
DD(DDx

k
!w

i
DD, ∀j (6)

is determined. Thus, at each iteration step a sequence r"0, 1,2, N!1 is constructed, with
r
i
indicating the rank number r associated with each of the prototypes (rank 0 is assigned to the
`winninga prototype w

i0
, rank 1 to the `co-winnera w

i1
, rank 2 to the third-closest prototype to the

current input pattern x
k
(t), etc.). Next, weight vectors updating is performed equivalent to step 3 of

the SOM procedure:

w
i
(t#1)"w

i
(t)#a(t)h

i0
(t)[x

k
(t)!w

i
(t)], (7)

where a(t) again is a learning rate and the neighborhood function h
i0
(t)"exp(!r

i
/j(t)) assures

that only the `winninga prototype w
i0

gets fully updated. Adjacent prototypes participate in the
updating process only gradually depending on their rank-ordered distance index from the `winnera
as determined by (6). Both a(t) and the neighborhood width j(t) are monotonically decreasing
functions of the iteration index. Since this kind of speci"cation of neighborhood updating around
the `winnera abandons the idea of a "xed grid of adjacent units, the TRN neighborhood concept is
much more #exible than the rigid SOM adjacency updating.

Moreover, in the TRN model the adjacency structure between each pair of prototypes is
constructed adaptively during training using information about the `winner/co-winnera relation-
ships: In addition to the weights adjustments, at each iteration the connection strength
C

i0j1
between the current `winnera and `co-winnera prototype (i.e., the two prototypes closest to

the input pattern x
k
) is tested. The connection strength is activated by setting C

i0 j1
"1 and age

t
i0 j1

"0. If the connection already exists (i.e., C
i0 j1

"1) it is only refreshed by re-setting the age
counter to zero. The age of all other already existing connections of u

i0
is increased by one. Finally,

connections of unit u
i0

which exceed lifetime ¹ are removed (C
i0 j
"0).

Martinetz and Schulten [4] showed that this adaptive procedure of dynamically learning and
unlearning of adjacency structures between rivaling prototypes succeeds in preserving rather
complicated topological data structures. They also quoted recommendations for parameterizations
of the learning and neighborhood update parameters as well as suitable functional forms of
time-dependent variables, which we adopted in the following.

3. Empirical study

In this section, we report the results obtained from empirical applications of the three models
discussed (MULTICLUS, SOM, TRN). We proceed as follows: First, the issue of model identi"ca-
tion and determination of the number of clusters (dimensions) is discussed and the derived
solutions are characterized for each approach. Second, the resulting con"gurations are compared
to each other in terms of variance accounted for and stability. Finally, we assess the predictive
validity of the methodologies.
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1We thank one of the anonymous referees for pointing this out (for further details on logit transformation and
associated modeling techniques widely used in marketing research see [25,26]).

3.1. Data description

Input data are derived from purchase histories of 781 non-brand-loyal panel households for nine
major brands accounting for 90% total market share in the margarine product class. There are six
national brands and three private labels (d2, d8, d9). The market leading brand (d1) which
accounts for about 31% of the total market volume, is a typical general purpose margarine. Brands
d3 and d4 with a market share of about 11% each, are usually used for cooking and baking,
whereas brands d5, d6, d7 and d9 are fat reduced or diet margarines.

The database for the combined CMS/segmentation problem consists of households' `zero-
ordera brand choice probabilities. Thus, each household k is described by a nine-component vector
x
k
. Element x

km
measures the relative purchase frequency of brand m"1,2, 9 in a two years

period, where +
m

x
km

"1. Note that consideration set heterogeneity across households (the
average set contains about three brands) results in a large number of zero entries.

3.2. MULTICLUS results

As recommended by DeSarbo et al. [13], input data for the MULTICLUS procedure need to be
preprocessed prior to analysis. In fact, usage of the described raw data without utilizing any
precautions leads to degenerate solutions (i.e., empty clusters with zero memberships) for all
possible combinations of numbers of clusters/dimensions (¹)C"1,2, 15) tested here. Row
standardization, a frequently applied preprocessing step, is not appropriate for the data set at hand
since brand choice probabilities (expressed as relative choice proportions) are constrained to sum
up to unity and result in a singular covariance matrix. One common way out of the di$culties
with unequal or correlated error variances is to apply a logistic transformation to the data:1
x@"ln(x/(1!x)). Furthermore, in order to account for di!erent levels of market shares the logit
transformed data are column standardized. As our main interest is to draw inferences about
competitive relationship patterns among brands this additional preprocessing step is suitable to
avoid con"gurations that simply re#ect di!erent choice shares of the brands.

Consequently, the results described below are derived from logit transformed and column (i.e.,
brand mode) standardized data. The MULTICLUS program allows for several options concerning
estimation of the (cluster speci"c) covariance matrices R

c
. Here, estimation indicated that the best

results in terms of Bayesian information criterion (BIC) and consistent Akaike information
criterion (CAIC) measures are obtained for the case of one common diagonal covariance matrix
R for all groups.

Of all the combinations of numbers of clusters/dimensions (¹)C"1,2, 15) analyzed, lowest
information criteria values are identi"ed for a nine cluster/six-dimensional solution with
CAIC"17253.016 and BIC"17253.004. This con"guration accounts for 57.2% of variance.
Unfortunately, the high dimensionality prohibits one single visualization of the market structure
that is easily accessible to consistent interpretation. Therefore, dimensional projections have to
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Fig. 2. MULTICLUS con"guration (brands coordinates and cluster vectors in dimension 1 versus 2).

be analyzed two by two which may lead to contradictory conclusions on the underlying competi-
tive structure. In general, MULTICLUS estimates showed a considerably high variance (each
cluster/dimension combination has been replicated "ve times), especially with increasing numbers
of clusters and dimensions. Note, that this symptom of extremely high parameterized solutions
occurs even though the usual model-speci"c precautions in terms of suitable data transformation
and preprocessing have been met. To reproduce a compressed version of the structure inherent to
the data, MULTICLUS is quite parameter consuming. Of course, this is also an e!ect of sample
size (here: 781 respondents); e.g., running the same procedure with random subsamples of only 10%
of the data regularly yields three cluster solutions and two or three dimensions (with VAFs of
around 30}40%).

For interpretation purposes we restrict ourselves to the "rst three two-dimensional sub-plots of
the nine cluster/six-dimensional solution for the total data set as represented in Figs. 2}4. The
con"guration depicted in Fig. 2 clearly identi"es clusters of households with distinctive preference
patterns (relative segment sizes are indicated in brackets): The sub-markets portrayed by vector
9 (12.5%) as well as vectors 3 (6.5%) and 5 (6.9%) are characterized by store loyal customers since
the private labels (brands d2, d8, and d9) are projected closest to them. Customers represented
by segment vectors 2 (11.1%), 1 (11.4%) and partly by segment 4 (16.3%) show high relative
preferences for cooking&baking brands. The latter segment, however, is clearly dominated by the
market leading general purpose brand d1 with an average purchase probability of about 63%.
Apart from a strong position in segment 1 brand d1 also yields a considerable share of choices in
segment 6 (12.8%), where it's major competitor is the fat-reduced margarine brand d5. The diet
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Fig. 3. MULTICLUS con"guration (brands coordinates and cluster vectors in dimension 1 versus 3).

Fig. 4. MULTICLUS con"guration (brands coordinates and cluster vectors in dimension 2 versus 3).
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Table 2
Heterogeneity, simplicity, VAF and replication values of SOMs

SOM layer MSE MSIPD VAF CVAF A.Rand A.Rand
(total) (split half)

5]5 0.100 0.063 0.749 0.626 0.750 0.672
4]5 0.096 0.088 0.724 0.643 0.771 0.648
4]4 0.103 0.103 0.714 0.618 0.765 0.620
3]4 0.106 0.159 0.696 0.627 0.738 0.621
3]3 0.135 0.168 0.574 0.544 0.735 0.630
2]3 0.150 0.307 0.540 0.528 0.703 0.605
2]2 0.181 0.374 0.441 0.440 0.962 0.757
1]3 0.213 0.308 0.370 0.370 0.956 0.707
1]2 0.257 0.294 0.256 0.256 0.990 0.918

brands are mostly preferred by members of segments 6}8 with relative sizes of 12.8, 12 and 10.4% of
households, respectively.

A similar portrayal of the market structure is provided in Fig. 3. However, projection of segment
vector 6 provides a slightly di!erent aspect of the market. Another variation is depicted by Fig. 4.
As one common aspect of all the sub-plots (also of those not given here) three groups of brands that
are plotted closer to each other are emerging, namely store brands (d2, d8, and d9), cook-
ing&baking brands (d3 and d4), and diet or fat-reduced margarine brands (d5, d6, and d7);
note also the outstanding position of the market leading brand d1. The smaller distances between
the members of those &natural' groups of brands are re#ecting mutually higher degrees of
competition and the positions of segment vectors relative to the brand positions are completing the
picture by re#ecting preference heterogeneity across households.

3.3. SOM results

While MULTICLUS con"gurations can be easily monitored by using likelihood based heuris-
tics, approaches like SOM or TRN do not provide direct access to such information criteria for
model selection. Instead, quantization error related criteria are consulted here. After SOM training,
a "nal classi"cation is determined by identifying the `best-matchinga unit according to rule (3)
during a `recall runa through the input data set. Analog to other techniques of exploratory data
analysis, the suitability of SOM formats are determined heuristically, e.g., by examining `good-
ness-of-"ta measures against a sequence of shrinking SOM layers.

Two such measures are listed in Table 2: As a heterogeneity measure, the `mean-squared errorsa
(MSE) inform about relative distances between (raw, i.e. non-transformed and unstandardized)
data points and corresponding prototype vectors w

ij
. Since more and more dissimilar preference

patterns are resembled together, total heterogeneity of cluster solutions should increase with
decreasing numbers of prototypes.

The simplicity measure summarizes deviations of "nal prototypes from the pre-speci"ed grid of
units and is computed as `mean-squared inter-prototype distancesa (MSIPD) for adjacent SOM
units, i.e., distances between each prototype vector w

ij
and it's immediately adjacent units w

ij`1
.
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Fig. 5. Two-dimensional mapping of the SOM prototypes.

For comparison across di!erent grid formats, the sum of distances is divided by the total number of
possible neighborhood relations. The small simplicity values in Table 2 for layers with 9 and more
units indicate a fairly `gooda representation of the topological relationships between the proto-
types or representing points. This property of "nal SOM con"gurations is also con"rmed by the
fairly good preservation of the SOM grid imposed adjacency structure as visualized in Fig. 5 by
a two-dimensional Sammon [27] projection of the prototypes for a 3]3 SOM layer.

However, the topological quality of those maps is achieved at the cost of the centroid property of
prototype vectors. Table 2 provides evidence for this trade-ow relationship by comparing the
`variance-accounted-fora (VAF) statistics of the partitions (within groups divided by total vari-
ance) with a `corrected VAFa (CVAF) measure adjusted for deviations of prototypes from
respective class means: The spread between these two measures of total data recovery increases
with improved topological quality of the map.

The issue of cluster validity is addressed in two ways here: First, as a measure of partition
agreement the Hubert and Arabie [28] adjusted Rand-Index (&A.Rand') is computed between each
pair of 30 replications of SOM training for the total sample. The considerably high averages
reported in Table 2 suggest that SOMs seem to be insensitive to random initialization e!ects (the
unadjusted Rand values reach values close to unity). Second, for each of the indicated SOM layers
separate replication analyzes as proposed by Milligan [29] are conducted for 30 split-half random
samples. Of course, mean adjusted Rand values do not reach those for the total sample. However,
they achieve levels (unadjusted Rand values are all larger than 0.87) that indicate strong support for
the assumption of SOM results stability.
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Fig. 6. SOM prototype pro"les and relative segment sizes.

In contrast to the geometric MULTICLUS model, SOMs provide only ordinal adjacency
information about various brand preferences along the discrete map of prototypes, which denote
competitive relations between brands on a market segment level. According to Table 2, MSIPD
scores `level o!a when reducing an 3]3 format to an 2]3 SOM layer. Therefore, we turn to the
3]3 SOM solution as depicted in Fig. 6 for interpretation purposes.

Since each of the nine prototypes represents one segment of households (relative segment sizes
are indicated in brackets), it is the combination of weight vector values (indicated in Fig. 6 by the
magnitudes of the columns) that denotes the degree of competition intensity among rival brands in
a speci"c sub-market: Segments with distinctive brand choice patterns (i.e., di!erent types of CMS)
are positioned in di!erent directions or corners of the competitive map; e.g., households with
extraordinarily strong brand preference for the general-purpose brand d1 are resembled in
segment 3 (19.6 per cent). In the map's opposite corner, purchase behavior of members of segments
7 and 4 seem to be brand usage dominated (brands d3 and d4 are traditionally used for cooking
and baking). Store loyal sub-markets for private labels (brands d2, d8, d9) are shifted to the
more distant units positions 9 and 8, while segment 1 is characterized by above-average preferences
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Table 3
Heterogeneity, VAF and replication values of TRN

Proto-types MSE VAF CVAF A.Rand A.Rand
(total) (split half)

16 0.069 0.776 0.765 0.948 0.633
15 0.071 0.779 0.765 0.874 0.645
14 0.073 0.779 0.762 0.857 0.640
13 0.077 0.770 0.745 0.815 0.647
12 0.080 0.765 0.742 0.814 0.664
11 0.082 0.759 0.737 0.824 0.684
10 0.088 0.727 0.716 0.954 0.654
9 0.091 0.729 0.715 0.890 0.662
8 0.109 0.673 0.667 0.893 0.636
7 0.128 0.614 0.612 0.859 0.635
6 0.136 0.582 0.575 0.944 0.661
5 0.156 0.574 0.570 0.828 0.586
4 0.181 0.457 0.456 0.946 0.784
3 0.213 0.375 0.375 0.904 0.752
2 0.257 0.255 0.255 0.919 0.942

towards the diet brands d6 and d7. Other segments (of smaller size) represent `mixturesa of their
adjacent prototypes.

Comparable to the MULTICLUS joint space, the outstanding e!ect of the market leading brand
d1 can also be encountered here. Except for the nearly `brand-loyalamarket segment 3, each of it's
adjacent segments (of smaller relative sizes) shows purchase patterns with a notion of preference for
di!erent `co-brandsa (e.g., the private labels d2 and d8 in segment 6, or the cooking&baking
brands d3 and d4 in segments 5 or 2, respectively). Finally, low weights values of a brand
throughout the map indicate a `fuzzya preference position that might call for repositioning actions.

3.4. TRN results

For selection of a suitable TRN cluster solution, we can proceed analog to the above demon-
strated screening of "nal SOM con"gurations with only one exception: The simplicity measure
(MSIPD) used for SOM model selection does not provide any information for TRN results. This is
due to the fact that the TRN model starts with a set of unordered units (i.e., there is no
predetermined grid of units) and the adjacency structure between prototypes is constructed
dynamically during the adaptation process.

Therefore, the analyst can restrict his investigations for model selection to the MSE (quantiz-
ation error) and VAF measures. As indicated in Table 3 for a decreasing sequence of number of
prototypes, MSE slightly levels o! when constructing a partition on the basis of eight instead of
nine TRN prototypes (also the associated VAF measures get considerably reduced as compared
to "ner partitions). Therefore, the properties of a nine prototype solution are commented below.
Note, that the di!erences between VAF and corresponding measures corrected for deviations of
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Table 4
Statistical neighborhood of prototypes

Winner/ Percentage of
co-winner data points

4}6 27.0
1}8 13.4
2}6 6.4
2}5 6.1
5}6 5.9
3}6 5.0
3}9 4.2
1}7 3.7
6}9 2.9
3}7 2.8
6}8 2.0
6}7 1.9
* *

prototypes from class centroids (CVAF) are much smaller here as compared to SOM results. This
indicates that TRN prototypes are better representants of respective cluster means than the SOM
weights are. Furthermore, the results generated by the TRN algorithm are very stable in terms of
average adjusted Rand values for the training sample. The same applies to the split-half random
sampling validity measures provided by the last column of Table 3.

After completion of TRN training, the adjacency structure between prototypes is determined by
the "nal entries of the connection strength matrix. In addition, TRN delivers information about the
frequencies of winner}co-winner relations between prototypes, which were responsible for estab-
lishing the connectivity structure during training and may be considered as indicators of the
relative strengths of statistical neighborhood. Table 4 shows an extract of the decreasing order of
percentages of data points involved in a winner}co-winner relationship in a recall run.

In terms of statistical neighborhood prototypes 4 and 6 are most often encountered in a win-
ner}co-winner relationship which represents about 27% of the data, followed by the pair of
prototypes 1, 8, etc. Trimming the adjacency graph at the value of 3.7 results in a con"guration of
eight pairwise prototype connections which form two substructures as portrayed in a two-
dimensional Sammon projection in Fig. 7.

In analogy to the interpretation of SOM con"gurations again the combination of the prototype
vector values given in Fig. 8 serves for detecting competitive intensity between the brands in the
respective segments. For example, according to the pro"les obtained for the above mentioned two
strongly connected prototypes 4 and 6 both of them indicate segments of households with strong
preferences for the market leading brand d1.

However, in contrast to SOM con"gurations after de"ning substructures of internally more
adjacent prototypes the marketing analyst is now in a position to investigate competitive patterns
between the rivaling brands both on a micro- and a more aggregated macro-segment level. Here,
substructure 1 accounts for about 30% of the total market and is formed by the three adjacent

1242 T. Reutterer, M. Natter / Computers & Operations Research 27 (2000) 1227}1247



Fig. 7. Two-dimensional mapping of a pruned TRN adjacency graph.

Fig. 8. TRN prototype pro"les and relative segment sizes.

prototypes 1, 8, and 7. As the micro-level prototype pro"les of segments 1 and 8 in Fig. 8 indicate,
both represent store-loyal households with high preferences for private labels d2, d8, and d9.
Note, that the connection between prototype 7 with an outstanding brand preference at the favor of
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Fig. 9. Pro"les of TRN substructure centroids.

the diet-brand d7 and prototype 1 is only weakly supported in terms of relative winner}co-winner
frequencies (about 3.7% of the data) and therefore might also be regarded as a `stand-alonea
prototype.

The resulting macro-level brand preference pro"les for the two sub-structures can be examined
by their respective centroid values as shown in Fig. 9. Sub-structure 2 represents about 70% of all
households and is clearly dominated by the market leading brand d1. Finally, the shape of the
branches of the adjacency graph itself provides another source of information about the similarit-
ies/dissimilarities of the various micro- or segment-level CMS. For example, prototypes 4 and 6 are
much stronger connected in terms of winner}co-winner frequencies than prototypes 5 and 9 are,
with the former representing a segment with high preferences for the baking margarine d3 and the
latter for the fat-reduced margarine brand d5.

3.5. Comparison of results and validity issues

As illustrated above, SOM and TRN results di!er from the joint space representation derived by
the MULTICLUS model in several aspects:

First, in contrast to the more familiar geometric coordinate spaces, SOM and the more general
TRN provide a discrete map of topologically ordered prototypes indicating the condensed
competition among brands at a segment level. Thus, the concept of competitive `threata has to be
shifted from the usual interpretation in terms of spatial distances between brand positions and their
(linear) segment-speci"c projections to an ordinal understanding of competitive relationship
patterns. The combination (i.e., the relative di!erences) of "nal prototype values (see Figs. 6 and 8)
indicates the intensity of brand competition within each of the segments. In addition to that,
segments with more similar patterns of (revealed) brand substitutability are arranged adjacent to
each other. Hence, CMS is a segment-speci"c concept in SOM and TRN analysis. Unlike the
MULTICLUS results, segments derived by SOM/TRN do not share a common CMS with an
unique con"guration of the rival brands.
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Second, the use of brand choice probabilities as input data makes segment-speci"c market shares
directly accessible from SOM results. In contrast to the `fuzzya clustering of preference data
performed by MULTICLUS, SOM/TRN-based competitive maps provide a hard partition of the
household mode. There is no need for any post hoc cluster assignment rules of households with
respect to posterior probabilities. In SOM/TRN-like representations it is rather the brand mode
that is portrayed in a `fuzzya style; brands do not occupy single positions but assist in interpreting
the prototypical patterns of purchase or brand-switching behavior in the various sub-markets.

Third, SOM/TRN-type analysis represents a more general approach for marketing data reduc-
tion. As previously shown by Mazanec [20] for three-way data, the non-parametric nature of SOM
analysis also allows for compression of binary pro"le data. Finally, since only local information is
required at each iteration, SOM training can be performed for data sets of unlimited size and/or
`on-linea for continuously incoming data, such as retail scanner data.

In the above empirical applications all three models were tested with respect to stability of the
resulting con"gurations. In contrast to the SOM and TRN partitions, MULTICLUS estimates
are confronted with severe degeneration tendencies. For replicated SOM and TRN analyses using
the total amount of data available, TRN delivers more stable con"gurations than the SOM model
does (see columns &A.Rand (total)' in Tables 2 and 3). This may be due to the rigid neighborhood
updating concept applied in SOM analysis.

To validate the cluster solutions of the three models under study, a procedure proposed by
Milligan [29] was applied for 30 split-half random samples each. As indicated in the last columns of
Tables 2 and 3, TRN achieves slightly higher mean values for the used measure of partitions
agreement (A.Rand: adjusted Rand index) as compared to SOM results. However, comparative
validation of the MULTICLUS algorithm results in a mean adjusted Rand value of 0.516 for the
above commented six dimensional nine clusters solution, which is signi"cantly lower than the TRN
nine prototype solution (mean A.Rand: 0.662).

4. Discussion

Our empirical analysis shows several bene"ts and shortcomings of the three methodologies
under investigation, MULTICLUS, SOM, and TRN. As compared to MULTICLUS, we found
the following advantages of using SOM or TRN for the task of combined market structuring and
segmentation analysis: The non-parametric neural network approaches showed higher robustness
against any kind of data preprocessing, a higher stability of the solutions in terms of a lower
variance in the adjusted rand index of the estimation sample, and did not produce degenerated
solutions. In terms of the cluster validation measure (adj. rand index for split half random samples)
both TRN and SOM outperform MULTICLUS.

Comparing the SOM and TRN approach, we "nd advantages for TRN which uses a more
#exible concept of adjacency structure. In TRN, no rigid grid of units must be speci"ed. A further
advantage of TRN lies in the possibility to exploit the information of the neighborhood graph
which supports ex-post decisions about the segment con"guration at both the micro and the
macro level.

Of course, the SOM and TRN approaches have some drawbacks as compared to MULTICLUS.
As a fully parametric model with known distributional properties, MULTICLUS con"gurations

T. Reutterer, M. Natter / Computers & Operations Research 27 (2000) 1227}1247 1245



are accessible to inferential statistics. MULTICLUS as a special case of the STUNMIX model
family allows for a large variety of methodological options, such as the use of di!erent types of
preference models (ideal-point vs. ideal-vector unfolding models), internal vs. external analysis,
simultaneous re-parameterization or property "tting (incorporation of brand descriptor variables)
and simultaneous segment description. The latter two options are obtainable in TRN/SOM
analysis in a two-stage procedure only (i.e., in a regression type analysis after completing training).

Our study indicates that non-parametric approaches such as TRN represent a useful exploratory
tool for the marketing analyst* especially when distributional properties of the data analyzed are
not known a priori.
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